

Content:

- Definitions and relevant guidelines
- The need for clean conditions
- Sources of contaminations
- Some facts about contaminations
- Summary

Definitions & Facts

- Relevant guidelines: VDI 2083 and EN ISO 14644
 "Cleanrooms and associated controlled environments"
- EN ISO 14644 is a valid standard in following European countries:

- Belgium

- Netherlands

- United Kingdom

- Denmark

- Luxembourg

- Czech Republic

- Germany

- Norway

- Italy

- Finland

- Austria

adopted as ANSI/IEST/ISO

- France

- Portugal

14644-1:1999 in the United

- Greece

- Sweden

- Ireland - Switzerland

_ ____

States

- Iceland

- Spain

Definitions & Facts

- → EN ISO 14644 part 1: classification of air cleanliness:
- particle: liquid or solid matter with diameter 0.1 μm 5 μm
- superfine particle: diameter < 0.1 μm
- macro particle: diameter > 5 µm
- fibre: particle with a ratio length: width ≥ 10

Definitions & Facts

EN ISO 14644 – part 1: classification of air cleanliness

Tabelle 1: Ausgewählte Partikelreinheitsklassen der Luft für Reinräume und Reine Bereiche

ISO- Klassifizierungszahl	Höchstwert der Partikelkonzentrationen (Partikel je Kubikmeter Luft) gleich oder größer als die betrachteten Größen, welche nachfolgend abgebildet sind (Die Konzentrationsgrenzen sind nach Gleichung (1) in 3.2 berechnet.)					
(N)	0,1 μm	0,2 μm	0,3 μm	0,5 μm	1 μm	5 μm
ISO-Klasse 1	10	2	_	_	_	_
ISO-Klasse 2	100	24	10	4	_	_
ISO-Klasse 3	1 000	237	102	35	8	_
ISO-Klasse 4	10 000	2 370	1 020	352	83	_
ISO-Klasse 5	100 000	23 700	10 200	3 520	832	29
ISO-Klasse 6	1 000 000	237 000	102 000	35 200	8 320	293
ISO-Klasse 7	_	_	_	352 000	83 200	2 930
ISO-Klasse 8	_	_	_	3 520 000	832 000	29 300
ISO-Klasse 9	_	_	_	35 200 000	8 320 000	293 000

Definitions & Facts

→ EN ISO 14644 – part 8: classification of airborne molecular contaminations

AMC are (chemical) species in gaseous or vaporous state in the atmosphere of a cleanroom, which may have a damaging effect on product, process or equipment

grouping of similar substances in so-called contaminant families (e.g. acids, bases, oxidants, condensable or organic contaminants...)

Definitions & Facts

ISO-AMC- classification

Tabelle 1 — ISO-AMC-Klassen

ISO-AMC-Klasse	Konzentration g/m³	Konzentration μg/m³	Konzentration ng/m³
0	10 ⁰	10 ⁶ (1 000 000)	10 ⁹ (1 000 000 000)
- 1	10 ⁻¹	10 ⁵ (100 000)	10 ⁸ (100 000 000)
- 2	10 ⁻²	10 ⁴ (10 000)	10 ⁷ (10 000 000)
- 3	10 ⁻³	10 ³ (1 000)	10 ⁶ (1 000 000)
- 4	10 ⁻⁴	10 ² (100)	10 ⁵ (100 000)
- 5	10 ⁻⁵	10 ¹ (10)	10 ⁴ (10 000)
- 6	10 ⁻⁶	10 ⁰ (1)	10 ³ (1 000)
-7	10 ⁻⁷	10 ⁻¹ (0,1)	10 ² (100)
- 8	10 ⁻⁸	10 ⁻² (0,01)	10 ¹ (10)
- 9	10 ⁻⁹	10 ⁻³ (0,001)	10 ⁰ (1)
– 10	10 ⁻¹⁰	10-4 (0,000 1)	10 ⁻¹ (0,1)
- 11	10 ⁻¹¹	10 ⁻⁵ (0,000 01)	10 ⁻² (0,01)
– 12	10 ⁻¹²	10 ⁻⁶ (0,000 001)	10 ⁻³ (0,001)

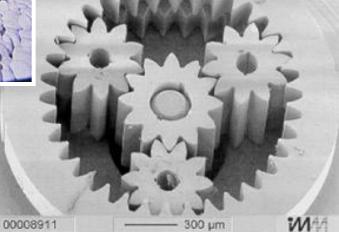
example: c(ammonia) = 10^{-6} g/m³ \rightarrow ISO-AMC-class –6 (NH₃)

The need for clean conditions

Who has to produce under *clean* conditions?

- semiconductors
- aerospace
- microelectronics
- Pharmaceuticals
- medical devices
- Healthcare
- Food

.... the only difference is the *level* of clean conditions


The need for clean conditions

....some examples

The need for clean conditions

Why to produce under *clean* conditions? because of preventing damages!

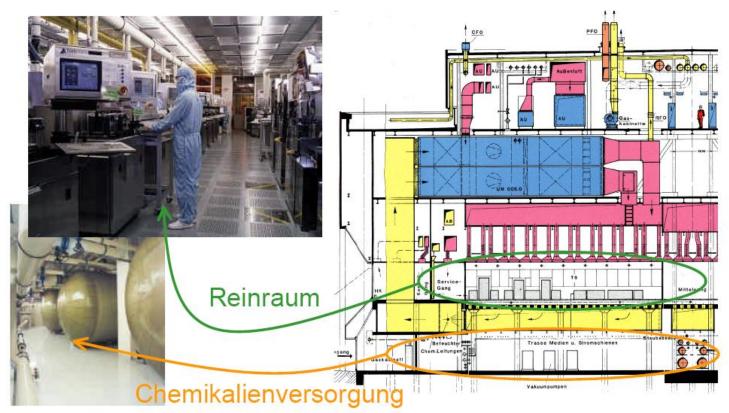
NASA Hubble Space Telescope

not performing as designed because of a particle < 0.5 µm

The need for clean conditions

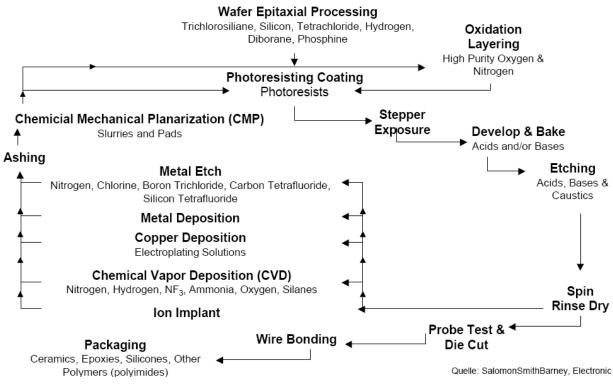
Requirements of cleanliness of products are increasing steadily:

- Semiconductor and electronic industry: decrease of structure width
- Industry: abandonment of preservatives
- Pharmaceutical industry:
 pureness of active pharmaceutical ingredients


Manufacturer's needs:

- Cutting of production costs
- Higher process reliability
- Less rejects due to defects

The need for clean conditions


... cross-section of a cleanroom in semiconductor's industry

The need for clean conditions

... chemical cocktail in chip manufacturing

Any contamination disturbing this complex process has to be avoided!

(1) People

- hair, skin flakes, spittle
- cosmetics and perfume
- Attitude:

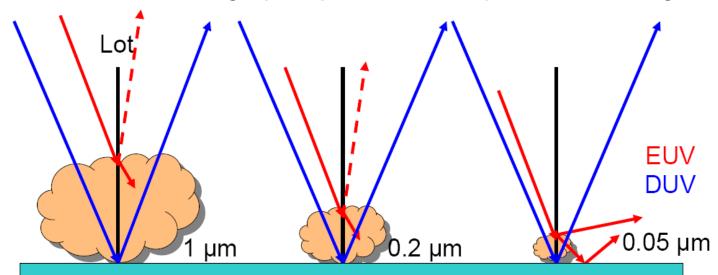
people activity	particles per minute (>0.3 microns)		
motionless (standing or seated)	100,000		
walking about 2 mph	5,000,000		
walking about 3.5 mph	7,000,000		
walking about 5 mph	10,000,000		
horseplay	100,000,000		

(2) Facilities

- walls, floors, ceilings
- paints and coatings
- air conditioning debris
- room air and vapours

cleaning chemicals

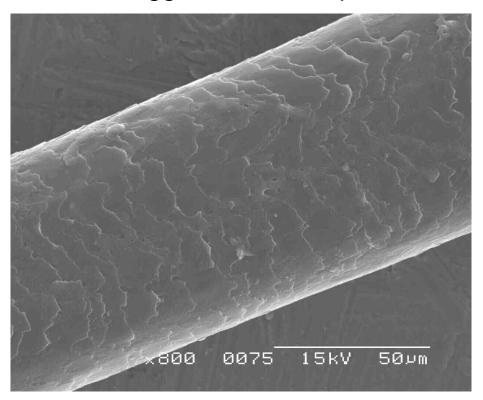
Sources of contaminations


- (3) Tool generated
- friction and wear particles
- Lubricants

- (4) Product generated
- silicon particles
- quartz flakes

Some facts about contaminations

... Particles on lithographic process in chip manufacturing



lithography at	1.0 µm particle	0.2 µm particle	0.05 µm particle
248 nm (DUV)	loss of contrast scattering	loss of contrast	no effect
13 nm (EUV)	loss of contrast absorption	analogue 1.0 µm	loss of transmission

Some facts about contaminations

... for comparison the diameter of a human hair is about 50 to 1000 times bigger than those particles

Some facts about contaminations

Analogue to the particle contaminations each sector of industry has its own acceptance criteria for airborne molecular contaminations

	tolerable organic layer (AMC) on substrate [nm]
lithography	< 0.1
hard discs	< 1
aerospace industry	< 4
precision mechanics	about 10
pharma / food	no visible contaminations

Summary

- Many sectors of industry have needs for clean production
- The requirements of cleanliness depend on products and processes
- These requirements have to be defined by the process owner
- Main goals of clean production are higher process reliability and less rejects due to defects
- Tendency to increasing requirements in various sectors of industry

Thank you for your attention

